Sylvester Equations and the Factorization of the Error System in Krylov Subspace Methods
نویسندگان
چکیده
This paper presents a factorization of the error system that arises in model reduction of linear time invariant systems by Krylov subspace methods. The factorization is introduced for reduced models that match moments and/or Markov parameters of the original system with multiple inputs and outputs. Furthermore, dual results are given for the reduction with input and output Krylov subspaces. To this end, this work constitutes a generalization of [Wolf et al. (2011)] where the factorization was first presented for a special case. The results emerge from an investigation of the Sylvester equations that arise in the context of Krylov subspaces. To that effect, previous results on Sylvester equations are revised and extended in this paper. The theoretic results on Krylov subspaces that are presented here can be useful in error analysis and in the selection of expansion points in Krylov-based model order reduction.
منابع مشابه
On the numerical solution of generalized Sylvester matrix equations
The global FOM and GMRES algorithms are among the effective methods to solve Sylvester matrix equations. In this paper, we study these algorithms in the case that the coefficient matrices are real symmetric (real symmetric positive definite) and extract two CG-type algorithms for solving generalized Sylvester matrix equations. The proposed methods are iterative projection metho...
متن کاملNumerical Solution of Fractional Control System by Haar-wavelet Operational Matrix Method
In recent years, there has been greater attempt to find numerical solutions of differential equations using wavelet's methods. The following method is based on vector forms of Haar-wavelet functions. In this paper, we will introduce one dimensional Haar-wavelet functions and the Haar-wavelet operational matrices of the fractional order integration. Also the Haar-wavelet operational matrices of ...
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملA Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation
Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...
متن کاملEvaluation of Preconditioned Krylov Subspace Methods for Navier-stokes Equations
The purpose of this work is to compare the performance of some preconditioned iterative methods for solving the linear systems of equations, formed at each time-integration step of two-dimensional incompressible NavierStokes equations of fluid flow. The Navier-Stokes equations are discretized in an implicit and upwind control volume formulation. The iterative methods used in this paper include ...
متن کامل